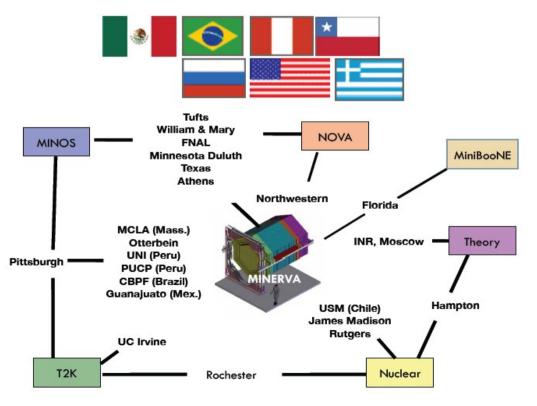
MINERvA: Introduction



Debbie Harris and Kevin McFarland
9 August 2010
Briefing with Directorate

MINERvA collaboration

- MINERvA is ~80 physicists
 - 1/4 from groups with strong ties to Jefferson Lab program
 - Leading roles in construction, calibration, analysis, governance

Goals of Particle Physics

- Determining the fundamental particles and interactions found in nature
- Understanding how those blocks work in extreme cases to develop underlying theory of interactions
 - Strongly interacting (non-perturbative) regimes and finite temperature
- Applying those theories to explain phenomena in the Universe from their microphysical origins

MINERvA and These Goals (1)

- Example: Leptons
 - Fundamental building blocks: neutrinos
 - MINERvA serves as engineering run for understanding mass splittings and mixing angles of neutrinos
 - Far-reaching consequences
 - Leptogenesis
 - Large scale structure of the universe
 - Nucleosynthesis

MINERvA and These Goals (2)

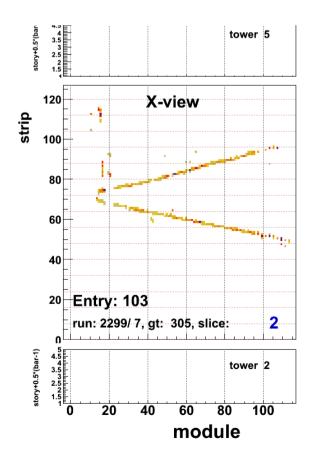
- Example: Strong Nuclear Force
 - Fundamental building blocks:
 - quarks, gluons (perturbative QCD)
 - baryons and mesons (elastic scattering off protons)
 - Successful description for both regimes, but...
 - don't know how to go from quark-gluon picture to baryonmeson picture
 - Can't put either picture inside a nucleus
 - Need suite of measurements to guide the theory
 - As always, we are limited to looking under "lamp posts" where our technology allows us to make measurements
 - MINERvA provides a new set of streetlights
 - Exclusive channels that probe different aspects of nucleus using the axial current
 - Comparisons of reactions on different nuclei

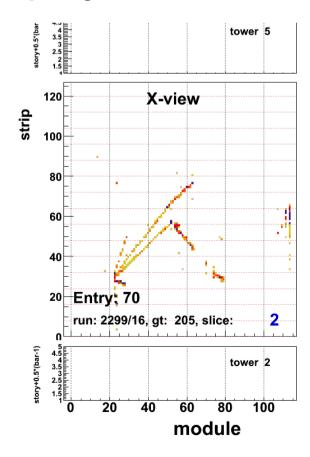
9 August 2010

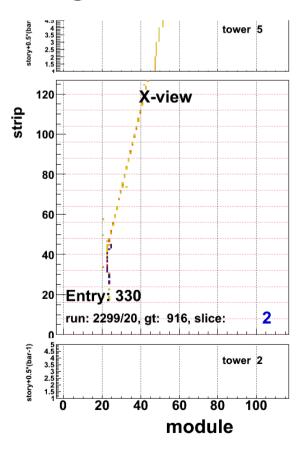
MINERvA Introduction

MINERvA's Nuclear Targets

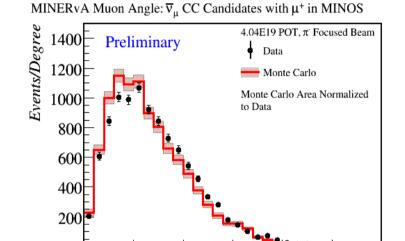
- 5 solid targets of varying composition: C, Fe, Pb
 - Target design optimized for reconstruction ability
- 2 Liquid Targets:
 He and H₂O


- Neutrino Event Statistics on Different targets:
 - 4E20 POT
 - GENIE neutrino event generator
 - Before detector acceptance applied

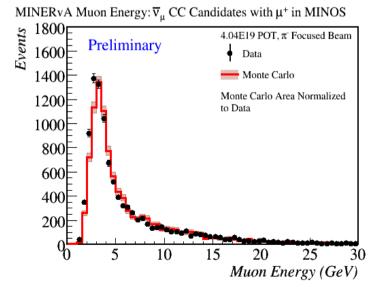

	ANY	CC	CCQE	CCQE truth	NC	CCCoh	NCCoh
Target							
1	175000	132000	35000	21000	43000	580	280
2	175000	132000	35000	21000	43000	360	280
3	149000	110000	27000	17000	38000	640	400
4	66000	50000	13000	8000	16000	60	60
5	87000	65000	17000	10000	22000	260	60
Tracker	1849000	1367000	287000	189000	482000	11000	6000
Total	2501000	1856000	414000	266000	644000	12900	7080


Nuclear Target Events

 Targets are passive, but surrounded with active tracker to allow projection into the targets



Status of Data Analysis


Theta (Degrees)

- Have run 2 calibration and reconstruction passes on first half of anti-neutrino run
- Have run calibration and reconstruction passes on several weeks of neutrino data
- Putting in details of optical model into simulation
- First Data/MC distributions shown at ICHEP
 - 4.04x10¹⁹ in anti-neutrino mode
 - Untuned neutrino flux

10

15

Summary

- MINERvA is accumulating a data set with great potential to illuminate complex phenomena in the nucleus
 - High statistics exclusive neutrino reactions
 - Range of different nuclei to see effects of the nuclear environment in weak interactions
- Next Presentations:
 - Ron Ransome: Exclusive Reactions
 - Eric Christy: Resonance Region Structure Functions and the transition to perturbative QCD
 - Jorge Morfin: Parton Distribution Functions of the Nucleon: Isolated and within the nucleus and the benefit of H₂/D₂ scattering at FNAL

Backup: Event Statistics in Anti-Neutrino Mode

- For comparison: 4E20 POT
- acceptance will also be worse because of missing proton track at vertex
- Total event comparison: factor of 3 in statistics,
 QE to QE truth ratio much worse in antineutrinos
- These are only the anti-neutrino events, neutrino contamination not shown

	ANY	CC	CCQE	CCQE truth	NC	CCCoh	NCCoh
Target							
1	54000	37000	13000	8000	16000	440	120
2	52000	35000	12000	8000	16000	300	170
3	47000	33000	11000	7000	14000	450	260
4	19000	13000	4000	2000	6000	100	40
5	25000	17000	6000	4000	7000	180	80
Tracker	630000	445000	153000	113000	185000	8400	4200
Total	827000	580000	199000	142000	244000	9900	4860